Pulse laser calibration of Cherenkov telescopes from an airship

Dario Hrupec
University of Osijek, Croatia

AstroGeoInformatics
Tenerife, December 18, 2018

Calibration

there is no natural science without measurements

there is no measurements without calibrated intruments

CALIBRATION == the comparison of measurement values delivered by an instrument (under test) with those of a standard (of known accuracy)

Calibration

• there is no natural science without measurements

astronomy

there is no measurements without calibrated intruments

CALIBRATION == the comparison of measurement values delivered by an instrument (under test) with those of a standard (of known accuracy)

Cherenkov telescope

Cherenkov telescope

• in full: Imaging Atmospheric Cherenkov Telescope (IACT)

CHERENKOV TELESCOPE == a ground-based instrument for gamma-ray astronomy at very-high energies (from some tens of GeV to some hundreds of TeV)

LST MST SST

MAGIC (30 GeV to 100 TeV)

CTA (20 GeV to 300 TeV)

Cherenkov telescope

also: Imaging Atmospheric Cherenkov Technique -

• in full: Imaging Atmospheric Cherenkov Telescope (IACT)

CHERENKOV TELESCOPE == a ground-based instrument for gamma-ray astronomy at very-high energies (from some tens of GeV to some hundreds of TeV)

MAGIC (30 GeV to 100 TeV)

CTA (20 GeV to 300 TeV)

Imaging Atmospheric Cherenkov Technique

IACT == imaging the very short flash of Cherenkov radiation generated by the cascade of relativistic charged particles produced when a very-high-energy gamma ray strikes the atmosphere

Imaging Atmospheric Cherenkov Technique

IACT == imaging the very short flash of Cherenkov radiation generated by the cascade of relativistic charged particles produced when a very-high-energy gamma ray strikes the atmosphere

a part of the detector

The atmosphere as a part of the detector

(direct) calibration should include the atmosphere

but... there is no test beam for Cherenkov telescopes

• so, (indirect) calibration relies on Monte Carlo simulations

The atmosphere as a part of the detector

• (direct) calibration should include the atmosphere

• but... there is no **test beam** for Cherenkov telescopes

so, (indirect) calibration relies on Monte Carlo simulations

Is there anything we can do about it (concerning recent advances in technology)?

A proposal: octocopter

Astroparticle Physics

Volume 97, January 2018, Pages 69-79

On the prospects of cross-calibrating the Cherenkov Telescope Array with an airborne calibration platform

Anthony M. Brown ™

A proposal: octocopter

- UV emiting LEDs + circular difuser, short pulses (4 ns)
- maybe too low and not safe enough

An advanced proposal: airship

- study in progress: could uncertainty in E be < 8% for cross-calibration with a pulse laser (e.g. 515 nm, 70 mW) and difuser
- use of T, p and humidity sensors for the atmospheric characterisation